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Problem StatementProblem Statement

• Problem:
– Vehicle health monitoring systems are corrupted with high rates of false alarms and missed 

detections

– Vehicle monitoring systems are designed without a complete understanding of the variability of 
systems and input signals

– Yet, anomaly detection algorithms must work within this highly variable environment

• Research Hypothesis:
– Understanding of variations and the distributional characteristics of healthy systems as well as 

failure signatures are a necessary precursor to the development of successful anomaly 
detection algorithms

• Proposed Approach:
– Data Understanding Problem:

• Develop accurate models and understanding of data variance, noise sources, and failure signatures: two 
types of variability (system and operational)  (PI: Irem Tumer) 

– Machine Learning Problem:
• Develop anomaly algorithms that take these factors into account for reliable detection (PI: Todd Leen)



Systems Variability Examples:Systems Variability Examples:
Design, Manufacturing, & Assembly VariationsDesign, Manufacturing, & Assembly Variations

Helicopter transmission: Variability in frequency response due to spacing variations:

Variability in vibration levels due to 
assembly variations:

Variability in vibration levels due to
bearing manufacturing variations:



System & Failure Variability Modeling System & Failure Variability Modeling 
ApproachApproach
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2. Monte Carlo models of variations and 
failure distributions:

1. Low-order Taylor-series models for 
variance and mean:

1.  Variation from component variability
with process capability pre-knowledge:

2. Variation from variability in rare failure
events without known distributions:

• Experiments to determine failure 
characteristics and distribution
• Simulation to determine effect of
variability on monitoring metric
• Failures: corrosion, fatigue, fracture, 
wear, …

Two types of system variability:

Two types of traditional approaches:

• Pre-knowledge of distributional 
characteristics for design parameters
• Sensitivity analysis to determine
significance

Histograms and models of distributional characteristics for
nonlinear and complex system dynamics



System & Failure Variability ModelingSystem & Failure Variability Modeling
FY02 ResultsFY02 Results

Cam-follower system:

Vibration 
response:

Dynamic 
model:

Monitoring Metric: Total Power

k = d4G
8D3N

Monte Carlo simulation of spring constant variability:



Operational Variability Examples:Operational Variability Examples:
Flight Maneuver VariationsFlight Maneuver Variations

Clustering of vibration (RMS) data based on pilots and different flights 
(series 1: pilot 1; series 2: pilot 2):

Maneuver 1 RPM, Torque
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Variation of PC1 angles for all maneuvers and flights:



Maneuver & Anomaly Classification Maneuver & Anomaly Classification 
ApproachApproach

• Hypothesis:
– Focusing on smaller windows (maneuver states) reduces/eliminates operational false 

alarms and missed detections due to maneuvering and torque changes
– Reverse classification: vibration features can be used to discriminate between maneuvers

• For example: If there is a mismatch between maneuvers/regime information from aircraft bus data 
and maneuver identification from the vibration data, then it is possibly a failure event!

• Proposed Approach:
– Ensemble Classifiers (Nikunj Oza & Kagan Tumer):
– 2 days x 2 pilots x 2 flights/pilot x 22 maneuvers/flight x 194 revs of the planetary gear

– 30 inputs
• Revolutions per minute of planetary gear
• Torque (average, standard deviation, skew, kurtosis)
• Six accelerometers (rms, skew, kurtosis, clipping)
• Which pilot was flying (2 possibilities)

– Output: 
• The maneuver being performed (14 possibilities)

– Training/Testing:
• 23000 randomly-chosen revolutions of data for training, remaining (11144) for testing.



Maneuver & Anomaly ClassificationManeuver & Anomaly Classification
FY02 ResultsFY02 Results

OH58

REVOLUTIONS ML METHOD MANEUVERS PERCENT CORRECT TORQUE, RPM VIBRATION

Single revs Neural Network original 81.313 ± 0.093 65.997 ± 0.095 75.636 ± 0.082

consolidated 93.472 ± 0.065 83.873 ± 0.060 88.806 ± 0.074

Ensemble original 83.807 ± 0.037

consolidated 94.620 ± 0.025

Window of 29 Neural Network original 89.891 ± 0.359 70.558 ± 0.102 88.529 ± 0.187

consolidated 96.828 ± 0.0644 86.766 ± 0.075 94.735 ± 0.108

Ensemble original 91.967 ± 0.086

consolidated 96.692 ± 0.034

Able to separate maneuvers based on vibration data
• Confusion caused by hover maneuvers and coordinated turns: consolidated (better)
• Inputs: single revolutions vs. a moving window average (better)
• Methods: neural nets vs. ensemble classifiers (better); Features:  Vib, Torque, RPM, bus data (better combined)
• Bus data alone provides good classification rates: can be used for regime identification? (Probability of 
classification agreement between vibration data and bus data for consolidated and windowed inputs:  >90%)

AH1 ALL INPUTS TORQUE, RPM VIBRATION BUS DATA

REVOLUTIONSML METHOD MANEUVERS PERCENT CORRECT

Single revs Neural Network original 95.940 ± 0.135 64.952 ± 0.142 74.216 ± 0.164 89.706 ± 0.124
consolidated 98.535 ± 0.097 73.500 ± 0.141 86.616 ± 0.133 95.423 ± 0.096

Ensemble original 98.184 ± 0.017

consolidated 99.804 ± 0.007
Window of 29 Neural Network original 97.817 ± 0.121 71.774 ± 0.247 82.571 ± 0.298 91.324 ± 0.129

consolidated 98.529 ± 0.090 77.779 ± 0.250 92.540 ± 0.228 95.902 ± 0.081

Ensemble original 99.308 ± 0.008
consolidated 99.546 ± 0.008

P(tr == vib) P(tr == bus) P(vib == bus)

Single revs Neural Network original 59.810 ± 0.223 59.256 ± 0.188 69.815 ± 0.170

consolidated 70.666 ± 0.198 70.573 ± 0.190 83.563 ± 0.124

Window of 29 Neural Network original 69.438 ± 0.318 66.165 ± 0.318 78.600 ± 0.280

consolidated 77.403 ± 0.272 75.508 ± 0.283 90.308 ± 0.219



ConclusionsConclusions

• Technical significance and impact of Year One progress:
– Enabled exploratory data analysis by collecting and processing helicopter vibration data

– Established the necessity to understand baseline variations
• Journal paper on mfg variability accepted for publication

• Journal paper on triaxial PCA angle variability accepted for publication

– Demonstrated feasibility of using Monte Carlo methods to model design variability
• ASME Design Engineering conference paper accepted for publication

• Journal paper submitted for review

– Started collaboration to generate empirical distributions for unknown failure events to model 
their variability characteristics

• 1 graduate student and 2 undergraduate students recruited, UMR, Prof. Dan McAdams

• Efforts to set up experimentation have started in June 2002

• Efforts to start testing of computational models started in August 2002

– Demonstrated the classification of maneuvers from vibration data to develop classifiers that 
detect mismatch between expected & anomalous inputs

• I.e., if we have misclassification/mismatch, it might be due to a failure event

• Conference paper submitted for review to NIPS 2002

• Journal paper in preparation

– Started exploration of other vehicle domains (e.g., aircraft engines, spacecraft?) where 
variability is of concern

• Linkable URLs:
– http://ic.arc.nasa.gov/people/itumer


